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Abstract— For many years, the welding community has assumed that
the detachment events within Gas Metal Arc Welding (GMAW) process are
stochastically driven. With this in mind, we set out to better understand
these mechanisms and what might drive the detachment events. Through
the investigation of 6061-Aluminum GMAW, a number of new insights into
globular, and spray transfer modes have been found. By using windowed
Fourier transform analysis, akin to Wavelet Analysis, we present evidence
that the GMAW process undergoes a shift from the globular mode fun-
damental frequency to its secondary harmonic frequency as the GMAW
process shifts from globular to spray mode transfer. This breakdown and
shift from primary to secondary fundamental frequencies and its reverse
are shown to occur often within the transition-welding mode in aluminum
GMAW. Furthermore, there is partial evidence that this shift of fundamen-
tal frequency modes from secondary to the third fundamental frequency
continues with the transition from the spray to streaming transfer. The ev-
idence for determinism as the driving force behind GMAW detachments is
strengthened through chaotic systems analysis, e.g. surrogate testing using
ApEn statistics.
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I. INTRODUCTION

In gas metal arc welding (GMAW), the use of a consum-
able electrode results in a degree of coupling between heat and
mass transfer. Approximately 80 to 85% of the electrical en-
ergy consumed by the process is transferred to the weldment
as heat [1]; approximately one-half of this transferred energy is
transported as sensible and superheat molten drops of metal [1].
Consequently, the manner in which the molten drops are trans-
ferred to the weldment are of interest. An IIW classification
of metal transfer listed six different transfer modes for GMAW
[2]. More recent convention lists three modes, in the order of in-
creasing current: short circuiting transfer, globular transfer, and
spray transfer [12]. This list neglects an additional mode, well
recognized by researchers, called streaming transfer or spray-
streaming transfer which occurs at higher current levels. It is
also known that rotating transfer can occur at even higher cur-
rent levels [3], but it is seldom seen in normal welding practice.
As for this work, we focus on the globular and spray transfer
modes.
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It has long been recognized that the mode of droplet trans-
fer in gas metal arc welding plays an important role in heat and
mass transfer of the process. The various modes of transfer have
been identified and mapped in parameter space and static mod-
els of detachment have been formulated. However, it is only
recently that attempts have been made to understand the physi-
cal basis for the dynamics of droplet transfer. One of the chal-
lenging questions in understanding droplet transfer dynamics is
determining if droplet transfer is a deterministic or stochastic
process.

In this work, we look at the frequency content of the electri-
cal signals in GMAW to see what information is present about
the metal transfer mode. We have chosen to focus on analyzing
the voltage measurements between the contact tip to the work
piece. In the sections that follow, we outline the experimental
setup; show a correlation between Fourier analysis peaks and
droplet detachment times; present a comparison between ex-
perimental data and a deterministic GMAW model [4],[5]; and
present some initial chaotic analysis used to determine if a signal
might be from a deterministic process. The process we under-
take within this paper provides a guide for investigating deter-
minism within other dynamic processes of interest.

II. ALUMINIUM GMAW EXPERIMENTS

Within the course of several different welding projects, we
became interested in sensing the droplet detachment events
through simple electrical measurements for possible inclusion
within an advanced GMAW control scheme. As we investigated
different welding materials, e.g. steel and aluminum, we found
that the electrical signals measured within the aluminum process
appeared qualitatively cleaner than those for steel. With this
knowledge in hand, we decided to focus on gas metal arc weld-
ing of 6061 aluminum bead on plate with 4043 filler wire using
an industrial grade (100%) Argon gas shield. We tested several
basic welding setups with similar results. For the experimen-
tal data presented here, we choose the 4043 electrode diameter
to be 0.76mm, the welding travel speed as 10mm

s
, the constant

voltage setting as 20 volts, the contact tip to work piece distance
as 20mm, the 6061 base plate as 1

4
inch sheet, a gas flow rate

of 30scfh, a weld time of 5 seconds, a data acquisition sample
rate of 5000Hz, and we allowed the wire feed speed to range
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throughout the experiments. We chose to focus on analyzing the
voltage measurements between the contact tip to the work piece.
Our primary welding power supply was a Miller Maxtron 450
CC/CV in constant voltage mode, although we obtained similar
results using a Hobart Arc Master 501 power supply. Similarly,
our wire feeder was a Miller Spoolmatic 30A air cooled spool
gun for the Fourier analysis results presented in Section III and
a Miller 60M Series 24V wire feeder for the model comparison
given in Section IV. Our data acquisition system and welding
setup were controlled via National Instruments data acquisition
system using an internally developed software package running
on a windows based PC under the LabVIEW programming envi-
ronment. Overall, there were well over 300 welds made during
the project, only a few results being presented here.

III. FFT BASED EVIDENCE

In earlier work, Lesnewitch [6] studied the transition from
globular transfer to spray transfer and showed that there is a rel-
atively sharp transition from globular to spray transfer as cur-
rent is increased. Subsequently, Clark, et. al. [7] studied the
transition region between globular and spray transfer, and de-
termined that there is actually mixed mode transfer occurring in
this region. Specifically, they determined that a globular trans-
fer event is followed by a series of spray transfer events followed
by a globular transfer event, and so on. There is an associated
change in arc length. The arc length decreases as the globu-
lar drop grows, rapidly increases in length following its detach-
ment, and then decreases slowly in length as the spray droplets
transfer until the final droplet in the spray series is stable and
grows into the next globular drop. This series continues in a
cyclical manner. We noticed this same effect within this work as
we viewed the welding processes via our high speed laser back
lighting system, sampled at 1000 frames a second. Furthermore,
we wondered if these effects of a changing droplet detachment
frequencies would be prevalent within the measured contact tip
to work piece voltages that we could easily monitor. Therefore,
we hand counted droplet detachment events from video footage
of each weld to determine both the droplet transfer mode as well
as the droplet transfer frequency, see Table I. With the goal of
finding the droplet frequency from within the measured volt-
ages, we chose to employ a Fast Fourier Transform (FFT) to
break the voltage signal down into its sinusoidal spectral com-
ponents. This analysis was completed for each of the welds.
Example FFTs for each region are show in Figures 1, 2, and 3.
The closest significant spectral peak calculated from the FFTs
for each weld is listed in Table I. The peak detection algorithm
is not presented here, however it is based on a simple smooth-
ing filter applied to the FFT (which could result in a slight shift
of the detected frequency) and a simple critical point detection
method, i.e. the first and second derivatives. As one studies
these FFTs, there seems to be an initial droplet detachment fre-
quency band of 20 to 100Hz for globular transfer with a second
harmonic band that appears to grow as one approaches the tran-
sition region. During transition the spectral components become
blurred across the primary and secondary harmonics within the
FFT. As one appears on the spray side there appears to be the
establishment of what was the second harmonic mode during
globular transfer now acting like a new primary harmonic mode

TABLE I
TABULATION OF THE HAND COUNTED DETACHMENT FREQUENCIES AND

FFT PEAKS FOR ALUMINUM GMAWS WITH WIRE FEED SPEED BETWEEN

119.1 mm

sec
AND 326.1 mm

sec
.

GMAW Average Average Wire Hand FFT
Transfer Voltage Current Feed Counted Peak

Mode Speed Frequency Detection
units Volts Amps mm

sec
Hz Hz

globular 24.08 77.32 119.1 22.1 53.4
globular 23.93 83.55 131.9 38.0 65.9
globular 23.62 93.87 151.4 62.2 81.8
globular 23.38 101.95 171.6 85.6 83.3
transition 22.94 120.23 194.1 157.7 172.1
transition 22.74 127.14 206.1 162.3 184.3
transition 22.67 129.87 211.5 204.1 199.6

spray 22.68 129.70 214.2 215.5 214.6
spray 22.41 140.36 234.0 263.2 257.3
spray 22.14 149.45 252.7 306.7 314.7
spray 21.90 156.83 272.5 333.3 338.5
spray 21.67 164.27 291.7 403.2 389.7
spray 21.41 172.39 311.3 406.5 432.2
spray 21.22 178.11 326.1 454.5 445.0

along with its appropriate second harmonic and so forth. We
found for our experiment, that the spray frequency band was
from about 200 to 500Hz. Although our wire feeder was not
able to go any faster, we feel that the growth and power equal-
ization of the spray’s primary and secondary harmonic peaks
was signaling the approach of the next transition to streaming
transfer. However, this conjecture is further strengthened by our
ApEn analysis presented in Section V.

In order to further clarify the interactions between the pri-
mary and secondary harmonics during transition we considered
employing a wavelet transform analysis. However, since this
analysis is primarily logarithmic within the frequency bands, it
would not allow for the right level of resolution with this prob-
lem. Therefore, we choose a simple windowed FFT analysis
shown in Figure 4. Within this analysis one can better see the
shifting between the globular and spray modes towards the end
of the weld, from 3 cm to 5.5 cm. Note the strong reoccurring
shifts between spectral components about 100Hz and 150Hz.

IV. DETERMINISTIC MODEL COMPARISON WITH
EXPERIMENTAL DATA

In an effort to obtain a better understanding of metal transfer
in GMAW, models of the process have been developed includ-
ing work by Quinn and Madigan [8], Bingul, et. al. [9], and
work at our laboratory [10] and [11]. In Watkin’s work, we fol-
lowed the lead of Shaw [3] on formulation of a dynamic model
of water droplets, adding to his model the various additional
forces occurring in GMAW, including surface tension, aerody-
namic drag by the plasma, electromagnetic forces, and momen-
tum transfer from the electrode. The resulting lumped parameter
droplet model was embedded in an electrical model of the sec-
ondary circuit of a welding machine, giving a dynamic solution
of droplet transfer. This model was later linearized by Moore,
et. al. [4],[5]. This linearized version of the model was used
to compare deterministically generated detachment time versus
wire feed speed plots to experimentally measured detachment
time versus wire feed plots, see Figure 5. The model constants
used for this comparison are given in Table II. As for the exper-
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Fig. 1. FFT of voltage signal for globular transfer mode with the wire feed
speed 119.1 mm
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, hand counted detachment frequency of 22.1Hz.
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Fig. 2. FFT of voltage signal for transition transfer mode with the wire feed
speed 206.1 mm
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, hand counted detachment frequency of 162.3Hz.
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Fig. 3. FFT of voltage signal for spray transfer mode with the wire feed speed
291.7 mm
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, hand counted detachment frequency of 403.2Hz.

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

450

500
FFT − Wavelet Like Plot − SOL−859

Fr
eq

ue
nc

y 
(H

z)

Position Along Weld (cm)

Fig. 4. Windowed FFTs (a poor man’s wavelet analysis) of voltage signal for
transition transfer mode with the wire feed speed 206.1 mm

sec
, hand counted de-

tachment frequency of 162.3Hz.

imental detachment times, these were generated using a simple
hand-tuned algorithm that predicts droplet detachments using
only the time varying voltage signals measured during the weld-
ing process. This algorithm was hand-tuned by synchronizing
video detachment events with the algorithms predicted detach-
ment events. The algorithm used was:

Initialize the algorithm

v̄ =
1

N

N∑

k=1

voltage(k) (1)

v̂ =
1

N − 1

N∑

1

(voltage(k) − v̄)2 (2)

T = v̄ + v̂ ∗ 1.25 (3)

δt = 0 (4)

i = 1 (5)

repeat
if ((voltage(i) > T ) & (voltage(i + 1) < T ) & (δt > 5))

δt = 0
Detachment Event

else
δt = δt + 1
No Detachment Event

end
until i = N

Notice that the deterministic model does in fact reproduce the
experimental data’s qualitative nature quite well (Figure 5).
Moreover, note that the quantitative results are quite good as
well. It should be noted that this simple linear model is of only
5th order. This will become more important as we investigate
the process’ true order via a couple chaotic analysis tools in Sec-
tion V.

V. CHAOS TOOLBOX EVIDENCE

As a further step in our quest to determine the motivation for
droplet detachment, i.e. stochastic or deterministic, we turn to
chaos analysis techniques, as well as hypothesis testing [13]-
[15]. It should be noted that these techniques will not definitely
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a) Experimental GMAW Data b) Modelled GMAW Data
Fig. 5. Detachment times versus wire feed speed for both experimental and modelled setup.

TABLE II
CONSTANTS USED TO PRODUCE FIGURE 5 B) WITH OZCELIK ET. AL’S

DETERMINISTIC GMAW MODEL.

Variable Value Physical
Name Property

a 0.641 Lorenz force constant
b 1.15 Lorenz force constant
c 0.196 Lorenz force constant
K 0.38 Spring constant
B 1e-6 Damping coefficient

rho 6.2e-2 Resistivity of the electrode
rhow 2700 Electrode density
rhop 1.6 Plasma density
muo 1.25664e-6 Permeability of free space
gama 0.86 Surface tension of liquid aluminum

Ls 0.14e-3 Source inductance
Ra 0.023 Arc resistance
Rs 0.004 Source resistance
Ub 10 Relative fluid to drop velocity
Vo 16.645 Arc voltage constant
Ea 341.54 Arc length factor
rw 3.8e-4 Electrode radius
C1 7.09e-10 Melting rate constant
C2 5.83e-10 Melting rate constant
Cd 0.44 Drag coefficient
g 9.81 Gravity

d1 4πrhow Constant defined in reset condition
d2 2π2gama Constant defined in reset condition

state if a signal’s motivation is stochastic or deterministic, how-
ever they do provide a means to rule out large classes of stochas-
tic processes. Similarly, they also provide a means to determine
if one cannot statistically tell the difference between the signal
of interest and a particular class of stochastic processes, e.g. au-
toregressive moving average (ARMA) models . The class of
stochastic process that most engineers are interested in are eas-
ily modelled by linear time invariant systems driven by white
noise processes. This is the same class of stochastic processes
that we are interested within this work.

Many of these ideas have emerged from the study of topol-

ogy, functional mappings, and sample theory. The first step in
employing the chaotic analysis toolbox is to determine the op-
timal sampling time for investigating the dynamics within the
signals of interest [13],[16]. To do this we have chosen to use
mutual information theory [13]. Since chaos analysis tools re-
quire a large number of data points in general, we generated
three additional welds for these types of analysis, i.e. they were
each in the globular, transition, and spray regions. These welds
lasted 122 seconds. They where sampled at 25000Hz and their
wire feed speeds were 170 mm

s
, 205 mm

s
, and 250 mm

s
, respec-

tively. The idea in choosing the right analysis time is that one
wants the dynamics to change as much as possible between each
time step without losing the correlation to the current time step,
i.e. choose the first minimum value within the mutual informa-
tion curve, see Figure 6. For globular and spray this is about
55 samples or 455Hz. As for the transition mode this is about
70 samples or 360Hz. Clearly, we have vastly over sampled our
signal, but this will not effect the analysis presented here. Using
these embedding times we applied the false nearest neighbors
(FNN) analysis to determine a bound on the dimension of the
system, see Figure 7. Note that the FNN analysis bounds the
system’s order between 3rd and 6th order, i.e. the upper bound
come from where the FNN curve drops to zero, and the lower
bound comes from Taken’s embedding theorem. Moreover, the
determination of the 6th order upper bound defines the order of
any empirical model developed from this data [13], and it en-
sures that any phase space reconstructions are untangled. For
stochastic signals the FNN analysis tends to approach zero then
begins to grow again as the embedding dimension is increased,
but this is not the case in Figure 7 for any of the modes. Now
that we have an upper bound for the system’s order, we can use
an estimate of the system’s Lyapunov spectrum to determine the
system’s true dynamic order [13]. In doing this we calculate
the forward and reverse Lyapunov exponents, see Figure 8. If
the forward and reverse exponents converge then that exponent
is determined to be real [13]. Moreover, Abarbanel suggests
that a zero exponent implies the signals comes from a set of dif-
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ferential equations [13]. The reader should be aware that this
Lyapunov analysis, while tentative, does suggest that the 5th or-
der model discussed in Section IV seems to be in line with this
result.

Finally, we apply an ApEn analysis to a much larger series of
welds to infer their detachment motivation, i.e. the same welds
used in Figure 5. This analysis consists of three steps: first, a
noise reduction of the data, second, the calculation of ApEn for
each time series, and finally, the comparison of ApEn of each
original time series with ApEn of an ensemble of its surrogates.
The techniques employed here closely follow those discussed in
detail in Ref.[15].

The noise reduction of the voltage time series was motivated
by the observation that only the spikes of about 200V were due
to droplet detachment; the signals at low voltages were due to
fluctuations induced by pre-detachment droplet dynamics. First,
each time series was divided into blocks of 200 points. The
mean V B and the standard deviation σB were calculated for
each block. Then the reduced-noise series V ′

t
was constructed

by setting V ′

t
= 0 whenever the corresponding Vt < V B +2σB ,

and setting V ′

t
= Vt −V B otherwise. Thus any non-stationarity

that might have been present in the original series was practi-
cally eliminated in V ′

t
, an important consideration for the surro-

gate data analysis discussed below.
The regularity statistic ApEn was calculated for each V ′

t
time

Lyapunov Exponents for Globular Mode
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series[†]. ApEn ranges from 0 for a perfectly regular (or peri-
odic) time series to ln(10) ≈ 2.3 in the limit of an infinitely
long uniformly random base-10 time series; lower ApEn cor-
responds to a more regular (and more correlated) time series.
Each series V ′

t
consisted of 19800 evenly sampled points. We

calculated ApEn twice, once for a segment of 8192 points on
the left side of the time series, beginning at the origin, and once
for the right side, with no points in common. The results are
displayed in Figure 9. With no prior knowledge of the physics
of the data, ApEn clearly identifies at least three regions as a
function of wire feed speed, which correspond to the previously
identified globular, transition, and spray regions, respectively.
Furthermore, the globular region corresponds to the most regu-
lar (low ApEn) time series, while the spray region corresponds
to the most irregular time series (higher ApEn), although far
from random, consistent with the identification of the regions
presented above.

The application of ApEn to the time series is interesting in
its own right. Nevertheless, the surrogate data analysis with
ApEn provides information concerning the dynamics of the se-
ries themselves. As discussed elsewhere[17][18], the surro-
gate data methods consists of testing the (null) hypothesis that
a stationary time series could have been generated from linear
stochastic (i.e., ARMA) dynamics by first generating surrogate
time series of the original according to simple criteria. If the
value of some statistic of the original series were statistically
close to the values of the same statistic applied to the surrogates,
the null hypothesis would be true. Nonlinear dynamics are a pre-
requisite for chaotic dynamics, so violations of the null hypoth-
esis are intriguing for stationary time series[‡]. We employed
the TISEAN software package to generate surrogates[19], and
employed ApEn as the statistic[15], to study a few, representa-
tive time series. The results are also incorporated into Figure 9.
The only time series studied that displayed a statistically signif-
icant violation were for wire feed speeds corresponding to the
globular region[§].
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sents a 2σ estimate of its uncertainty. The two circled data points indicate that
the null hypothesis is violated at the 5% level. The null hypothesis passes for the
others, where the overlap between the original and surrogate ApEn is visible.

VI. CONCLUSIONS

Although the evidence is not complete or conclusive, we feel
that the new evidence presented here suggests that the droplet
detachment process within GMAW appears to be deterministi-
cally driven rather than a purely stochastically driven, as previ-
ously believed by the community at large.
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ENDNOTES

[†] ApEn is a statistic devised by Pincus (cf. S. M. Pincus, “Approximate en-
tropy as a measure of system complexity”, Proc. Nat. Acad. Sci. 88 (1991)
2297; S. M. Pincus, “Approximate entropy (ApEn) as a complexity mea-
sure”, Chaos 5 (1995) 110;S. M. Pincus and B. H. Singer, “Randomness
and degrees of irregularity”, Proc. Nat. Acad. Sci.) to measure the regu-
larity, and by extension, the complexity of a sequence. Specifically, ApEn
is the conditional probability that runs of patters that are close for some
number of observations remain close. ApEn for finite data depends pri-
marily upon three parameters that need to be held constant for the sake of
meaningful comparison: N , the length of the time series, m, the length
of the test pattern, and a tolerance r that defines the closeness of patterns.
In certain limits ApEn is related to the topological and the metric entropy,
thus ApEn is “approximate entropy”, but we follow Pincus’ suggestion to
employ ApEn as a statistic in its own right. Also following Pincus’ recom-
mendations, we fix N = 8192, m = 2, and r = 0.2σ, where σ is the
standard deviation of the time series V ′

t
.

[‡] It has been pointed out that a non-stationary time series constructed with
simple linear stochastic dynamics also gives a violation of the null hypoth-
esis. See J. Timmer, “The power of surrogate data testing with respect to
non-stationarity”, Phys. Rev. E 58 (1998) 5153.

[§] As discussed in Ref.[15], we employed the two-sided Wilcoxson rank sum
test at the 5% significance level. See also R. L. Schaeffer and J. T. Mc-
Clave, Probability and Statistics for Engineers, Third Ed., (PWS-Kent,
Boston, 1990); Ch. 12.


